add first dsd presentation

This commit is contained in:
Arthur Grisel-Davy 2022-08-31 15:57:25 -04:00
parent a0afd2b79f
commit 22029f436c
22 changed files with 189 additions and 0 deletions

BIN
DSD/images/2022150712.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 306 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 127 KiB

Binary file not shown.

View file

@ -0,0 +1,189 @@
\documentclass[aspectratio=169,10pt]{beamer}
\usetheme[progressbar=head,numbering=fraction,sectionpage=none]{metropolis}
\usepackage{graphicx}
\usepackage{ulem}
\usepackage{xcolor}
\usepackage[scale=2]{ccicons}
\usepackage{pgfplots}
\usepackage{booktabs}
\usepgfplotslibrary{dateplot}
\usepackage{hyperref}
\usepackage{multirow}
\usepackage{array}
\usepackage{xspace}
\title{Device State Detector (DSD): Formalization}
\subtitle{Trust me I've read a book.}
\date{}
\author{Arthur Grisel-Davy}
\institute{University of Waterloo, Canada}
\begin{document}
\maketitle
\begin{frame}{Context}
\begin{center}
\textit{For any power trace $t$ captured on from a machine $M$, detect the state $C_i$ of the machine for every sample $t[n]$.}\\
\vspace{1cm}
\textit{Assign a class $C_i$, to every sample of a power trace $t[n]$ from a machine $M$ corresponding to a state of the machine, from a set of pre-established states.}
\end{center}
\vfill
$\Longrightarrow$ Supervised, multi-class, mono-label, classification problem.
\end{frame}
\begin{frame}{Definitions}
\begin{itemize}
\item $t$: a power trace of fixed sampling rate and length $N$. $t[n] \forall n\in[1,N]$ are the samples value of $t$.
\item $p_i$: The proto examples of the states. Power traces corresponding to the $P$ states to detect. Each proto is of length $N_i$, not necessarily equals.
\end{itemize}
\end{frame}
\begin{frame}{Normalized distance}
\begin{align}\label{eq:distance_original}
&nd: a\times b \in T^2 \rightarrow \mathbb{R} \nonumber\\
&nd(a,b) = \dfrac{Eucd(a,b)}{N_b}
\end{align}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Center}
\begin{itemize}
\item Place sample at center of window.
\item Compute normalized distances to each proto.
\item Assign to closest proto.
\end{itemize}
\end{frame}
\begin{frame}{1-Nearest Neighbor}
\includegraphics[width=\textwidth]{images/detection_real___empty_1NNcenter.pdf}
\end{frame}
\begin{frame}{Performance metric}
\begin{itemize}
\item Accuracy: $Acc = \dfrac{1}{N}\sum_{n\in N}1_{(l[n] = true[n])}$
\item State occurrence: Count state occurrence independently of correct position or size.
\end{itemize}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Dynamic position}
\begin{figure}
\centering
\includegraphics[width=0.9\textwidth]{images/presentation_Page 1_presentation.pdf}
\end{figure}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Dynamic position}
\includegraphics[width=\textwidth]{images/detection_real___empty_1NNmin.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Dynamic position}
\includegraphics[width=\textwidth]{images/detection_real_asus_1_1NNmin.png}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Dynamic position}
\includegraphics[width=\textwidth]{images/detection_real_DELL-1_1NNmin.png}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Dynamic Distance}
\begin{align}\label{eq:distance_original}
&dynd: t[n]\times p_i \in (t, protos)\nonumber\\
&dynd(a,b) = \min_{k\in [n-N_i,n+N_i])}(nd(t[n-k:n-k+N_i],p_i))
\end{align}
\end{frame}
\begin{frame}{Limitations of the method}
\begin{itemize}
\item Significant miss-classification between close classes.
\item Impossibility to detect outlier/out-of-scope patterns.
\item Rely too much on protos \textit{tiling} assumption.
\end{itemize}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 1.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 2.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 3.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 4.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 5.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 6.pdf}
\end{frame}
\begin{frame}{Variable Length Normalized Distance}
\begin{align}\label{eq:distance_original}
&vlnd: t[n]\times p_i \in (t, protos)\nonumber\\
&vlnd(a,b) = \min_{k\in [n-N_i,n+N_i])}(nd(t[n-k:n-k+N_i],p_i))
\end{align}
\end{frame}
\begin{frame}{Checkpoint}
Three distance measures:
\begin{itemize}
\item Normalized Distance, to compare distances to protos:
\begin{equation}nd(a,b) = \dfrac{Eucd(a,b)}{N_b}\end{equation}
\item Dynamic Distance, to compare sample arc to protos: \begin{equation}dynd(a,b) = \min_{k\in [n-N_i,n+N_i])}(nd(t[n-k:n-k+N_i],p_i))\end{equation}
\item Variable Length Normalized Distance, to get protos inter-distances: \begin{equation}vlnd(a,b) = \min_{k\in [n-N_i,n+N_i])}(nd(t[n-k:n-k+N_i],p_i))\end{equation}
\end{itemize}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 7.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage}
\includegraphics[width=\textwidth]{images/NN_schematic_presentation_DSD_Page 8.pdf}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage $\alpha=1$}
\includegraphics[width=\textwidth]{images/detection_real___empty_1_1NNmin}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage $\alpha=0.75$}
\includegraphics[width=\textwidth]{images/detection_real___empty_0.75_1NNmin}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage $\alpha=0.5$}
\includegraphics[width=\textwidth]{images/detection_real___empty_0.5_1NNmin}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage $\alpha=2$}
\includegraphics[width=\textwidth]{images/detection_real_DELL-1_2_1NNmin.png}
\end{frame}
\begin{frame}{1-Nearest Neighbor - Shrinkage $\alpha=1$}
\includegraphics[width=\textwidth]{images/detection_real_DELL-1_1_1NNmin.png}
\end{frame}
\begin{frame}{Conclusion}
\begin{itemize}
\item DSD is an implementation of 1-NN with custom distances and shrinkage.
\item Can easily be adapted to multiple protos per class.
\item Data requirements and constraints minimal.
\item Detects $P+1$ classes.
\item One hyperparameter $\alpha$ to controle miss/un -classification tradeoff.
\end{itemize}
\end{frame}
\begin{frame}{Future Work}
\begin{itemize}
\item Capture and label more data.
\item Evaluate possibility of uneven shrinkage.
\item Detect attacks, publish paper, save the world, accept Nobel prize.
\end{itemize}
\end{frame}
\end{document}