diff --git a/DSD/qrs/images/2w_experiment.svg b/DSD/qrs/images/2w_experiment.svg index ef7b305..cb16e54 100644 --- a/DSD/qrs/images/2w_experiment.svg +++ b/DSD/qrs/images/2w_experiment.svg @@ -7,8 +7,11 @@ viewBox="0 0 609.24652 216.63609" version="1.1" id="svg5" - inkscape:version="1.2.2 (1:1.2.2+202305151915+b0a8486541)" + inkscape:version="1.2.2 (b0a8486541, 2022-12-01)" sodipodi:docname="2w_experiment.svg" + inkscape:export-filename="2w_experiment.pdf" + inkscape:export-xdpi="175.618" + inkscape:export-ydpi="175.618" xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape" xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd" xmlns="http://www.w3.org/2000/svg" @@ -25,12 +28,12 @@ inkscape:document-units="mm" showgrid="false" inkscape:zoom="0.70710678" - inkscape:cx="1112.279" - inkscape:cy="461.74073" + inkscape:cx="1268.5496" + inkscape:cy="458.20519" inkscape:window-width="1920" - inkscape:window-height="1016" + inkscape:window-height="1056" inkscape:window-x="1920" - inkscape:window-y="27" + inkscape:window-y="0" inkscape:window-maximized="1" inkscape:current-layer="layer1" /> 2: Exactly one "reboot" occurence.2: Exactly one "reboot" occurence and no "high" occurence.3: There should not be "high" states for more than 30s.3: There should not be "high" states for more than 2m.0 + y="118.62257">4 diff --git a/DSD/qrs/main.tex b/DSD/qrs/main.tex index de17858..fe6b607 100644 --- a/DSD/qrs/main.tex +++ b/DSD/qrs/main.tex @@ -1,4 +1,3 @@ - \documentclass[conference]{IEEEconf} @@ -33,7 +32,7 @@ \input{acronyms} \title{\textbf{\Large MAD: One-Shot Machine Activity Detector for Physics-Based Cyber Security\\}} -\author{Arthur Grisel-Davy$^{1,*}$, Sebastian Fischmeister$^{2}$\\ +\author{Arthur Grisel-Davy$^{1,*}$, Sebastian Fischmeister$^{1}$\\ \normalsize $^{1}$University of Waterloo, Ontario, Canada\\ \normalsize agriseld@uwaterloo.ca, sfishme@uwaterloo.ca\\ \normalsize *corresponding author @@ -194,6 +193,7 @@ The pattern $\lambda$ is the \textit{unknown} pattern assigned to the samples in \label{fig:overview} \end{figure} +\pagebreak \section{Proposed Solution: MAD}\label{sec:solution} \gls{mad}'s core idea separates it from other traditional sliding window algorithm. In \gls{mad}, the sample window around the sample to classify dynamically adapts for optimal context selection. @@ -249,6 +249,7 @@ s_i = \underset{j\in[1,k]}{\arg\min}(sd(i,e_j) \textrm{ with } sd(i,e_j)