#import "@preview/polylux:0.3.1": * #import themes.metropolis: * #show: metropolis-theme.with( footer: [CC BY-SA 4.0 Arthur Grisel-Davy] ) #set text(font: "Fira Sans", weight: "light", size: 20pt) #show math.equation: set text(font: "Fira Math") #set strong(delta: 100) #set par(justify: true) #title-slide( author: [Arthur Grisel-Davy, Sebastian Fischmeister], title: "MAD: One-Shot Machine Activity Detector for Physics-Based Cyber Security", subtitle: "", date: "University of Waterloo", extra: "agriseld@uwaterloo.ca" ) //#slide(title: "Table of contents")[ // #metropolis-outline //] #slide(title: "Introduction")[ #only(1)[#figure(image("images/wein_p1.svg", height: 100%))] #only(2)[#figure(image("images/wein_p2.svg", height: 100%))] #only(3)[#figure(image("images/wein_p3.svg", height: 100%))] #only(4)[#figure(image("images/wein_p4.svg", height: 100%))] #only(5)[#figure(image("images/wein_p5.svg", height: 100%))] ] #slide(title: "Problem Statement")[ #align(center)[Given a #text(fill: blue, weight:400 )[discretized time series $t$] and a #text(fill: red, weight:400)[set of patterns $P=\{P_1, dots.h, P_n\}$], identify a mapping $m: NN arrow.r P union lambda$ such that every sample $t[i]$ maps to a pattern in $P union lambda$ with the condition that the sample #text(fill: purple, weight: 400)[matches] an occurrence of the pattern in $t$.] ] #slide(title: "Proposed Approach")[ ] #slide(title: "Proposed Approach - 2D Interpretation")[ ] #slide(title: "Parameter")[] #slide(title: "Case Study 1")[] #slide(title: "Case Study 1 - Results")[] #slide(title: "Case Study 2")[] #slide(title: "Case Study 2 - Results")[] #slide(title: "Futur Work")[] #slide(title: "Conclusion")[ ] #focus-slide()[ #align(center)[Thank you for your attention.] ] //#new-section-slide([Second section]) // //#focus-slide[ // Wake up! //]