196 lines
5.9 KiB
Typst
196 lines
5.9 KiB
Typst
#import "@preview/polylux:0.3.1": *
|
|
#import themes.metropolis: *
|
|
#import "@preview/tablex:0.0.5": tablex, hlinex, vlinex, colspanx, rowspanx
|
|
|
|
#show: metropolis-theme.with(
|
|
footer: [CC BY-SA 4.0 Arthur Grisel-Davy]
|
|
)
|
|
|
|
#set text(font: "Fira Sans", weight: "light", size: 20pt)
|
|
#show math.equation: set text(font: "Fira Math")
|
|
#set strong(delta: 100)
|
|
#set par(justify: true)
|
|
|
|
#title-slide(
|
|
author: [Arthur Grisel-Davy, Sebastian Fischmeister],
|
|
title: text(size: 30pt, weight: 500)[MAD: One-Shot Machine Activity Detector for Physics-Based Cyber Security],
|
|
subtitle: "",
|
|
date: "University of Waterloo",
|
|
extra: "agriseld@uwaterloo.ca"
|
|
)
|
|
|
|
//#slide(title: "Table of contents")[
|
|
// #metropolis-outline
|
|
//]
|
|
|
|
#slide(title: "Introduction")[
|
|
#only(1)[#figure(image("images/wein_p1.svg", height: 100%))]
|
|
#only(2)[#figure(image("images/wein_p2.svg", height: 100%))]
|
|
#only(3)[#figure(image("images/wein_p3.svg", height: 100%))]
|
|
#only(4)[#figure(image("images/wein_p4.svg", height: 100%))]
|
|
#only(5)[#figure(image("images/wein_p5.svg", height: 100%))]
|
|
]
|
|
|
|
|
|
#slide(title: "Problem Statement")[
|
|
#align(center)[Given a #text(fill: blue, weight:400 )[discretized time series $t$] and a #text(fill: red, weight:400)[set of patterns $P=\{P_1, dots.h, P_n\}$], identify a mapping $m: NN arrow.r P union lambda$ such that every sample $t[i]$ maps to a pattern in $P union lambda$ with the condition that the sample #text(fill: purple, weight: 400)[matches] an occurrence of the pattern in $t$.]
|
|
]
|
|
|
|
#slide(title: "Constraints")[
|
|
- Only one pattern is available per state/label.
|
|
- Patterns are not necessarily all the same length.
|
|
]
|
|
|
|
#slide(title: "Proposed Approach")[
|
|
#only(1)[#figure(image("images/aproach_p1.svg", width: 100%))]
|
|
#only(2)[#figure(image("images/aproach_p2.svg", width: 100%))]
|
|
#only(3)[#figure(image("images/aproach_p3.svg", width: 100%))]
|
|
#only(4)[#figure(image("images/aproach_p4.svg", width: 100%))]
|
|
#only(5)[#figure(image("images/aproach_p5.svg", width: 100%))]
|
|
#only(6)[#figure(image("images/aproach_p6.svg", width: 100%))]
|
|
#only(7)[#figure(image("images/aproach_p7.svg", width: 100%))]
|
|
#only(8)[#figure(image("images/aproach_p8.svg", width: 100%))]
|
|
#only(9)[#figure(image("images/aproach_p9.svg", width: 100%))]
|
|
]
|
|
|
|
#slide(title: "Proposed Approcah")[
|
|
#align(center)[
|
|
#text(weight: "bold")[Metric:] The distance between a sample and a pattern is the minimum normalized distance between the pattern and any pattern-length substring that includes the samples.
|
|
#v(1cm)
|
|
#text(weight: "bold")[Decision:] Each sample receives the label of the closest training pattern.
|
|
]
|
|
]
|
|
|
|
#slide(title: "2D Interpretation")[
|
|
|
|
#only(1)[#figure(image("images/2d_p1.svg", width: 100%))]
|
|
#only(2)[#figure(image("images/2d_p2.svg", width: 100%))]
|
|
#only(3)[#figure(image("images/2d_p3.svg", width: 100%))]
|
|
#only(4)[#figure(image("images/2d_p4.svg", width: 100%))]
|
|
#only(5)[#figure(image("images/2d_p5.svg", width: 100%))]
|
|
]
|
|
|
|
#slide(title: "Question")[
|
|
#align(center)[Should the algorithm #text(weight: "bold")[always] choose a label?]
|
|
]
|
|
|
|
#slide(title: "2D Interpretation")[
|
|
|
|
#figure(image("images/2d_p6.svg", width: 100%))
|
|
]
|
|
|
|
#slide(title: "Parameter "+sym.alpha)[
|
|
#figure(
|
|
image("images/areas.svg", width: 100%)
|
|
)
|
|
#align(center)[With $alpha lt.triple 2$, the algorithm acquire novelty-detection capability.]
|
|
]
|
|
|
|
#slide(title: "Performance Metric")[
|
|
#figure(
|
|
image("images/metric.svg", width: 100%)
|
|
)
|
|
]
|
|
|
|
|
|
#slide(title: "Case Study 1")[
|
|
|
|
#align(center)[
|
|
#figure(
|
|
tablex(
|
|
columns: (auto, auto, auto),
|
|
auto-vlines: false,
|
|
repeat-header: false,
|
|
align: (left+horizon,right+horizon,right+horizon),
|
|
[#text(weight:"bold")[Dataset]], [#text(weight: "bold")[Length]], [#text(weight: "bold")[Number of Occurences]],
|
|
[NUCPC-0], [22700], [11],
|
|
[NUCPC-1], [7307], [8],
|
|
[Generated], [15540], [18],
|
|
[WAP-ASUS], [26880], [18],
|
|
[WAP-LINKSYS], [22604], [18],
|
|
[REFIT-H4A4], [5366], [17],
|
|
[REFIT-H4A1], [100000], [142]
|
|
),
|
|
caption: "Results of the case study 1",
|
|
supplement: none,
|
|
)
|
|
]
|
|
|
|
]
|
|
#slide(title: "Case Study 1 - Results")[
|
|
#figure(
|
|
image("images/dsd_acc.svg", height: 100%)
|
|
)
|
|
]
|
|
|
|
|
|
#slide(title: "Case Study 2")[
|
|
#image("images/rules_pipeline.svg", width:100%)
|
|
]
|
|
|
|
#slide(title: "Case Study 2")[
|
|
#align(center)[
|
|
#image("images/2w_experiment.svg", width: 90%)
|
|
|
|
#tablex(
|
|
columns: (auto, auto, auto),
|
|
auto-vlines: false,
|
|
repeat-header: false,
|
|
align: (left+horizon,right+horizon,right+horizon),
|
|
[#text(weight:"bold")[Rule ID]], [#text(weight: "bold")[Rule]], [#text(weight: "bold")[Threat]],
|
|
[1], ["SLEEP" state only], [Machine takeover, Botnet, Rogue employee],
|
|
[2], [No "SLEEP" for more than 8m], [System malfunction],
|
|
[3], [One "REBOOT"], [APT, Backdoors],
|
|
[4], [No "HIGH" for more than 30s], [Crypto mining, Ransomware, Botnet],
|
|
)
|
|
]
|
|
]
|
|
|
|
|
|
#slide(title: "Case Study 2")[
|
|
#figure(
|
|
image("images/preds.svg", height: 100%)
|
|
)
|
|
]
|
|
|
|
#slide(title: "Case Study 2 - Results")[
|
|
#align(center)[
|
|
#figure(
|
|
tablex(
|
|
columns: (auto, auto, auto),
|
|
auto-vlines: false,
|
|
repeat-header: false,
|
|
align: (left+horizon,right+horizon,right+horizon),
|
|
[#text(weight:"bold")[Rule]], [#text(weight: "bold")[Violation Ratio]], [#text(weight: "bold")[Micro-$F_1$]],
|
|
[Night Sleep], [0.33], [1.0],
|
|
[Work Hours], [0.3], [1.0],
|
|
[Reboot], [0.48], [1.0],
|
|
[No Long High], [0.75], [1.0],
|
|
),
|
|
caption: "Results of the case study 2",
|
|
supplement: none,
|
|
)
|
|
]
|
|
]
|
|
|
|
|
|
#slide(title: "Future Work")[
|
|
- Automatic Training (Patterns Extraction) #pause
|
|
- Multivariate Support
|
|
]
|
|
|
|
//#slide(title: "Conclusion")[
|
|
// #figure(image("images/wein_p6.svg", height: 100%))
|
|
// //Side-channel can be a relevant, independent and actionable source of information for IDS.
|
|
//]
|
|
|
|
|
|
#focus-slide()[
|
|
Thank you for your attention!
|
|
|
|
#text(size: 20pt)[Contact: #text(weight: "bold")[agriseld\@uwaterloo.ca]]
|
|
]
|
|
|
|
#slide(title: "Errors of 1NN")[
|
|
#figure(image("images/proof.svg", height: 100%))
|
|
]
|