246 lines
8.1 KiB
TeX
246 lines
8.1 KiB
TeX
\documentclass[aspectratio=169,10pt]{beamer}
|
|
\usetheme[progressbar=head,numbering=fraction,sectionpage=none]{metropolis}
|
|
|
|
\usepackage{graphicx}
|
|
\usepackage{ulem}
|
|
\usepackage{xcolor}
|
|
\usepackage[scale=2]{ccicons}
|
|
\usepackage{pgfplots}
|
|
\usepackage{numprint}
|
|
\usepackage{booktabs}
|
|
\usepgfplotslibrary{dateplot}
|
|
\usepackage{hyperref}
|
|
\usepackage{multirow}
|
|
\usepackage{tcolorbox}
|
|
\usepackage{array}
|
|
\usepackage{xspace}
|
|
|
|
\title{Ph.D. Research proposal: Physics Based Security}
|
|
\subtitle{}
|
|
\date{}
|
|
\author{Arthur Grisel-Davy}
|
|
\institute{University of Waterloo, Canada}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\begin{frame}{Introduction}
|
|
|
|
\end{frame}
|
|
|
|
\begin{frame}{Common IDS Solution}
|
|
% Figure from the EMSOFT presentation with the different side channels and our solution
|
|
\begin{center}
|
|
\only<1>{\includegraphics[width=\textwidth]{images/main_illustration_p1.pdf}}
|
|
\only<2>{\includegraphics[width=\textwidth]{images/main_illustration_p2.pdf}}
|
|
\only<3>{\includegraphics[width=\textwidth]{images/main_illustration_p3.pdf}}
|
|
\only<4>{\includegraphics[width=\textwidth]{images/main_illustration_p4.pdf}}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Features of Side-Channels}
|
|
\begin{columns}
|
|
\begin{column}{0.5\textwidth}
|
|
{\color{green}Advantages}
|
|
\begin{itemize}
|
|
\item Easy to Measure
|
|
\item Hard to Forge
|
|
\item Independent from the System
|
|
\item Low Intrusiveness
|
|
\item No Client Required
|
|
\end{itemize}
|
|
\end{column}
|
|
\begin{column}{0.5\textwidth}
|
|
{\color{red}Inconvenients}
|
|
\begin{itemize}
|
|
\item Only Partial Information
|
|
\item Aggregated Signal of All Components
|
|
\item Require New Processing Tools
|
|
\end{itemize}
|
|
\end{column}
|
|
\end{columns}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Prelimirary Work - EET1}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\textwidth]{images/overview_eet1.pdf}
|
|
\end{figure}
|
|
Attacks: Firmware Changes, SSH Logs Tempering, Hardware Tempering
|
|
\end{frame}
|
|
|
|
\begin{frame}{Prelimirary Work - EET1: Firmware}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{images/Firmware_Comparison_TD_direct.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Prelimirary Work - EET1: Firmware}
|
|
\begin{table}[ht]
|
|
\centering
|
|
\begin{tabular}{lccc}
|
|
\toprule
|
|
\textbf{Attack} & \textbf{Model} & \textbf{F1 Score} & \textbf{Accuracy} \tabularnewline
|
|
\midrule
|
|
\multirow{2}*{Firmware Changes DC} & RFC & \numprint[\%]{100} & \numprint[\%]{100} \tabularnewline
|
|
& SVM & \numprint[\%]{96.8} & \numprint[\%]{99.3}\tabularnewline
|
|
\midrule
|
|
\multirow{3}*{SSH Logs Tempering}& RFC & \numprint[\%]{95} & \numprint[\%]{97} \tabularnewline
|
|
& SVM & \numprint[\%]{96} & \numprint[\%]{98} \tabularnewline
|
|
& 1D-CNN & \numprint[\%]{93} & \numprint[\%]{96} \tabularnewline
|
|
\midrule
|
|
\multirow{3}*{Hardware Tempering} & DC SVM & & \numprint[\%]{100} \tabularnewline
|
|
& DC KNN & & \numprint[\%]{100} \tabularnewline
|
|
& AC SVM & & \numprint[\%]{99.5} \tabularnewline
|
|
\bottomrule
|
|
\end{tabular}
|
|
\end{table}
|
|
|
|
\footnote{Published in \textit{Side-channel Based Runtime Intrusion Detection for Network Equipment} at MLCS (Workshop of ECML-PKDD 2023)}
|
|
\end{frame}
|
|
|
|
\begin{frame}{ Preliminary Work - xPSU}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{images/xpsu_illustration.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Preliminary Work - SDS \& BPV}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\textwidth]{images/sds_illustration.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Preliminary Work - SDS \& BPV}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.9\textwidth]{images/training_bpv.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Preliminary Work - SDS \& BPV}
|
|
\begin{table}[ht]
|
|
\centering
|
|
\begin{tabular}{lccc}
|
|
\toprule
|
|
\textbf{Test Case} & \textbf{Experiment} & \textbf{F1 Score} \tabularnewline
|
|
\toprule
|
|
\multirow{4}*{Network Devices} & TP-Link switch & 0.87\tabularnewline
|
|
& HP switch & 0.98 \tabularnewline
|
|
& Asus Router & 1.00\tabularnewline
|
|
& Linksys Router & 0.92\tabularnewline
|
|
\midrule
|
|
\multirow{4}*{Drone} & Original & 1.00\tabularnewline
|
|
& Compiled & 1.00\tabularnewline
|
|
& Low Battery & 1.00\tabularnewline
|
|
& Bootloader Bug & 1.00\tabularnewline
|
|
\bottomrule
|
|
\end{tabular}
|
|
\end{table}
|
|
\footnote{Published in \textit{Work-in-Progress: Boot Sequence Integrity Verification with Power Analysis} at EMSOFT 2022\\
|
|
and in \textit{Independent Boot Process Verification using Side-Channel Power Analysis} at QRS 2023}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Overview}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=\textwidth]{images/intro_dsd.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Main problem Statement}
|
|
\textbf{Problem Statement 1}
|
|
\textit{
|
|
Given a discretized time series $t$ and a set of patterns $P=\{\chi, P_1,\dots, P_n\}$, identify an injective mapping $m_{SSSM}:\mathbb{N}\longrightarrow P$ such that every sample $t[i]$
|
|
maps to a pattern in $P$ with the condition that the sample matches an occurence of the pattern in $t$.
|
|
}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Overview of the Problems}
|
|
% Figure from the EMSOFT presentation with the different side channels and our solution
|
|
\begin{center}
|
|
\only<1>{\includegraphics[width=\textwidth]{images/map_illustration_Page 1.pdf}}
|
|
\only<2>{\includegraphics[width=\textwidth]{images/map_illustration_Page 2.pdf}}
|
|
\only<3>{\includegraphics[width=\textwidth]{images/map_illustration_Page 3.pdf}}
|
|
\only<4>{\includegraphics[width=\textwidth]{images/map_illustration_Page 4.pdf}}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Planned Work - SSSM}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.9\textwidth]{images/dsd_illustration.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
\begin{frame}{Planned Work - SSSM}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.9\textwidth]{images/dsd_acc.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
\begin{frame}{Planned Work - SSSM}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.9\textwidth]{images/preds.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Planned Work - SSSM}
|
|
Next Steps:
|
|
\begin{itemize}
|
|
\item Evaluate performances on a wider range of devices.
|
|
\item Increase realiability of results (investigate differential shrinkage).
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Planned Work - SSMM}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[width=0.9\textwidth]{images/ssmm_illustration.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Planned Work - SSMM}
|
|
Next Steps:
|
|
\begin{itemize}
|
|
\item Developp capture system.
|
|
\item Evolve the SSSM system for multi-variate support.
|
|
\item Evaluate performances.
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\begin{frame}{Planned Work - MSSM}
|
|
\begin{figure}
|
|
\centering
|
|
\includegraphics[height=0.9\textheight]{images/mssm_illustration.pdf}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Planned Work - MSSM}
|
|
Next Steps:
|
|
\begin{itemize}
|
|
\item Developp new method for AC State Detection.
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Conclusion}
|
|
\begin{itemize}[<+- | alert@+>]
|
|
\item Preliminary work illustrates potential and identified a gap.
|
|
\item Three main problems identified:
|
|
\begin{itemize}[<+- | alert@+>]
|
|
\item SSSM shows good results so far.
|
|
\item SSMM is an extension of preliminary work.
|
|
\item MSSM remains untackled.
|
|
\end{itemize}
|
|
\item This topic is captivating to me.
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|
|
|