64 lines
1.5 KiB
Typst
64 lines
1.5 KiB
Typst
#import "@preview/polylux:0.3.1": *
|
|
#import themes.metropolis: *
|
|
|
|
#show: metropolis-theme.with(
|
|
footer: [CC BY-SA 4.0 Arthur Grisel-Davy]
|
|
)
|
|
|
|
#set text(font: "Fira Sans", weight: "light", size: 20pt)
|
|
#show math.equation: set text(font: "Fira Math")
|
|
#set strong(delta: 100)
|
|
#set par(justify: true)
|
|
|
|
#title-slide(
|
|
author: [Arthur Grisel-Davy, Sebastian Fischmeister],
|
|
title: "MAD: One-Shot Machine Activity Detector for Physics-Based Cyber Security",
|
|
subtitle: "",
|
|
date: "University of Waterloo",
|
|
extra: "agriseld@uwaterloo.ca"
|
|
)
|
|
|
|
//#slide(title: "Table of contents")[
|
|
// #metropolis-outline
|
|
//]
|
|
|
|
#slide(title: "Introduction")[
|
|
|
|
]
|
|
|
|
|
|
#slide(title: "Problem Statement")[
|
|
#align(center)[Given a #text(fill: blue, weight:400 )[discretized time series $t$] and a #text(fill: red, weight:400)[set of patterns $P=\{P_1, dots.h, P_n\}$], identify a mapping $m: NN arrow.r P union lambda$ such that every sample $t[i]$ maps to a pattern in $P union lambda$ with the condition that the sample #text(fill: purple, weight: 400)[matches] an occurrence of the pattern in $t$.]
|
|
]
|
|
|
|
#slide(title: "Proposed Approach")[
|
|
]
|
|
|
|
#slide(title: "Proposed Approach - 2D Interpretation")[
|
|
]
|
|
|
|
#slide(title: "Parameter")[]
|
|
|
|
#slide(title: "Case Study 1")[]
|
|
#slide(title: "Case Study 1 - Results")[]
|
|
|
|
|
|
#slide(title: "Case Study 2")[]
|
|
#slide(title: "Case Study 2 - Results")[]
|
|
|
|
#slide(title: "Futur Work")[]
|
|
|
|
#slide(title: "Conclusion")[
|
|
]
|
|
|
|
|
|
#focus-slide()[
|
|
#align(center)[Thank you for your attention.]
|
|
]
|
|
|
|
|
|
//#new-section-slide([Second section])
|
|
//
|
|
//#focus-slide[
|
|
// Wake up!
|
|
//]
|